US 9,208,353 B2

3

applications include secure video devices, tactical handheld
radios, front-ends for Intelligent Surveillance and Reconnais-
sance (ISR), secure communications modules, sensors, or
telemetry units.

Configuring a computer system to include fully indepen-
dent instruction and data spaces can help improve the security
of the computer system. Using byte-code transformation
(“Harvardization”) or encryption, systems can reduce the
attack surfaces that exist as a result of shared instruction and
data spaces or buses used in many computer systems. Encryp-
tion of the instruction, data, and microcode spaces can help
thwart tampering and reverse engineering. The pre-execution
of Harvardized code can help disable byte-code based
attacks, such as code injection attacks.

Systems described herein can be configured to execute
legacy Von Neumann architecture instruction sets in a system
with a Harvard architecture (e.g., a pure Harvard architec-
ture). A pure Harvard architecture means a system where
instructions and data formatted for execution in a Von Neu-
mann environment can be transformed to a form executable
by a system with a Harvard architecture. The transformed
instructions and data can be encrypted, such as by using a
relatively low-latency encryption algorithm and low-latency
decryption algorithm (e.g., combinatorial algorithms that can
combine arithmetic and logical operations such as a one-time
pad algorithm or other algorithm). The encryption and
decryption algorithm used is flexible and can be chosen based
on the needs of the application. The decrypted instructions
and data can be transmitted to a Transformation Execution
Engine (TXE) which can be configured to execute legacy
instruction sets and provide anti-malware and anti-tamper
security. Systems described herein can be implemented in, for
example, an embedded, real-time computer architecture.

FIG. 1 shows an example of a Harvard architecture 100.
The Harvard architecture 100 can include a Central Process-
ing Unit (CPU) 102, physically separate or independent
instruction memory 104 and data memory 106, and Arith-
metic Logic Unit (ALU) or Floating Point Unit (FPU) 108,
and Input/Output (I/O) 110 lines to peripheral devices. The
CPU can include the ALU or FPU 108, a Computer Control
Unit (CCU) 107, and other control logic.

The instruction memory 104 can be read only memory and
the data memory 106 can be read-write memory. The instruc-
tion memory 104 can be an operating system (OS) or an
application memory. The data memory 106 can be an appli-
cation memory. The instruction memory 104 and the data
memory 106 can be physically separate or independent, such
as to include no common or shared signal paths. The instruc-
tion memory 104 and the data memory 106 can be commu-
nicatively or electrically coupled to the CPU 102. The instruc-
tion memory 104 can include control logic. The data memory
106 can include read/write and control logic.

The ALU or FPU 108 can be configured to perform math-
ematical or other operations on data received from the CPU
102. The CPU 102 can instruct the ALU or FPU 108 which
operations it is to perform and which data the ALU or FPU
108 is to perform the operations on.

The VO 110 can be electrically or communicatively
coupled to the CPU 102 and a peripheral device, such as a
sensor, video, transceiver, Geographical Positioning System
(GPS), or other peripheral device.

FIG. 2 shows an example of a computer system 200 with a
Harvard architecture that is configured to be tamper and mal-
ware resistant. The computer system 200 can include a har-
vardizer 212, an encryptor 214, the instruction memory 104,
the data memory 106, a decryptor 216, a combination encryp-
tor and decryptor 218, and the CPU 102.

10

15

20

25

30

35

40

45

50

55

60

65

4

The harvardizer 212 can receive data and instructions con-
figured for use in a computer system with a Von Neumann
architecture or another architecture where the data and
instructions are comingled or not independent. The harvard-
izer 212 can be configured to separate the comingled data and
instructions. For example, if the harvardizer 212 receives a bit
string “0101010111110000” that is intended to be used in an
eight-bit Von Neumann architecture, then the harvardizer 212
can parse the string into the instruction “01010101” and the
data “11110000”. The harvardizer 212 can be configured to
determine how the data received is configured so that it can
accurately parse the data and the instructions. The harvardizer
212 can send the parsed (e.g., separated) data to the data
memory 106 and the instructions to the instruction memory
104.

The optional encryptor 214 can encrypt the parsed data or
instructions from the harvardizer 212 and send them to the
encrypted data to the data memory 106 and the encrypted
instructions to the instruction memory 104. The optional
decryptor 216 can receive encrypted instructions from the
instruction memory 104 and send decrypted instructions to
the CPU 102. The optional encryptor and decryptor 218 can
receive encrypted data from the data memory 106 and send
decrypted data to the CPU 102. The optional encryptor and
decryptor 218 can receive data from the CPU 102 and send an
encrypted version of the data to the data memory 106.

FIG. 3 shows a block diagram of an example of a computer
system 300 that can include the CPU 102, the instruction
address/instruction bus 103, the instruction memory 104, the
data address/data bus 105, the data memory 106, or a periph-
eral device 320. The CPU 102 can include one or more Trans-
formation eXecution Engines (TXE) 322A-D. The TXEs 322
can be configured to receive instructions and data in a Harvard
architecture format and execute the instructions as a function
of the data. The data can be received from the data memory
106 or a peripheral device 320. The TXE 322 can be config-
ured to execute legacy instructions received as a function of
corresponding legacy data received. The TXE 322 can be
configured to execute eight-bit code such as 1802 or Z80 8-bit
code, 16-bit code, such as x86 code, 32-bit code, 64-bit code,
or other bit codes. The TXE 322 can be configured to execute
instructions coded in a specific language, such as Java, C,
C++, Python, or Matlab, among others. The TXE 322 can
provide application separation, execution assurance, or secu-
rity between applications, such as by acting as a separation
kernel.

The peripheral device 320 can be electrically or commu-
nicatively coupled to the CPU 102. The peripheral device 320
can be a sensor, video display or recording, audio transmis-
sion or recording, transceiver, Geographical Positioning Sys-
tem (GPS), or other peripheral device.

FIG. 4 shows a block diagram of another computer system
400 with a tamper or malware resistant architecture. The
computer system 400 can include a CPU 102, the instruction
memory address and control logic 423, the data memory
address and control logic 425, a CCU 107, micro-code mod-
ule 426, a computer control unit address, data, and control
interconnect 434, an instruction address/instruction bus 103,
or a data address/data bus 105.

The CPU 102 can include a Harvard computer engine 428,
1/0 110, a combination encryptor and decryptor 218, an inter-
rupt handler 430, or an endian translation module 432. The
Harvard computer engine 428 can be configured to receive
data and execute instructions in a Harvard architecture for-
mat. In one or more embodiments the Harvard computer
engine 428 can be a TXE 322.



